Program: Master of Science Program in Geoinformatics (International Program)

Degree: Master of Science (Geoinformatics)

Study Plan:

1) Research Program (Scheme A 1)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
1	M.Sc. Thesis	3-15	M.Sc. Thesis	3-15	M.Sc. Thesis	3-15
ear	Seminar 1	1				
Y	Total	4-16	Total	3-15	Total	3-15
7	M.Sc. Thesis	3-15	M.Sc. Thesis	3-15	M.Sc. Thesis	3-15
ear					Seminar 2	1
Y	Total	3-15	Total	3-15	Total	4-16

2) Regular Program (Scheme A 2)

Year	First Trimester	Cr	Second Trimester	Cr	Third Trimester	Cr
1	Core Course	12	Core Course 4 Elective		Elective Course	8
ear			Elective Course	6	Seminar 1	1
Y	Total	12	Total	10	Total	9
5	M.Sc. Thesis	3-15	M.Sc. Thesis	3-15	M.Sc. Thesis	3-15
ear					Seminar 2	1
Υ	Total	3-15	Total	3-15	Total	4-16

3) Regular Program (Scheme B)

Year	First Trimester	Cr	Second Trimester		Third Trimester	Cr
1	Core Course	12	Core Course		Elective Course	8
ear			Elective Course	8		
Y	Total	12	Total	12	Total	8
	Elective Course	6	Independent Studies	3	Independent Studies	3
ear	Seminar 1	1			Seminar 2	1
Y	Total	7	Total	3	Total	4

Program: Master of Science Program in Geoinformatics (International Program)

Degree: Master of Science (Geoinformatics)

Course Description:

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Core Course				
106601 Remote Sensing: Theory and Applications	4(4-4-12)	None	This course aims to study remote sensing theories and application in various aspects. These include, in particular, origin/development of key remote sensing systems, principles of remote sensing systems regarding types of sensor, platform, and target e.g. (1) ground-based, airborne, spaceborne; and (2) sea/ocean, atmosphere, space remote sensing. Applications of remote sensing in different fields along with general information on main resources of data and tools for advanced remote sensing research/applications are also discussed.	

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106602 Digital Image Analysis and Interpretation	4(3-3-10)	None		 Explain principles and algorithms of digital image analysis and interpretation Perform visual interpretation of high- resolution aerial photos/satellite imageries Apply digital image processing software for radiometric and geometric corrections, image enhancement, image classification/accuracy assessment, and digital change detection Integrate knowledge on digital image analysis and interpretation in practice

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106603	Geographic Information System: Theory and Applications	4(3-3-10)	None	Main aim of this course is to study principles of geographic information system (GIS), introduction to geographic coordinate system, relationship between GIS, remote sensing, and global navigation satellite system (GNSS), elements of GIS data, structure and types of data layers, data management (including creation, import, edit, and coordinate transformation), introduction to spatial analysis, application of GIS for spatial analysis.	 Explain principles of geographic information system (GIS) Relate GIS, remote sensing, and global navigation satellite system (GNSS) Create and manipulate spatial data Analyze spatial data Integrate spatial analysis methods to create geo-information
106604 Elective (Geoinformatics Research Methodology for M.Sc. Program	4(3-3-10)	None	This course aims to provide the knowledge in conducting the master research under the research philosophy and the research methodology for Geoinformatics. Practices are set up in this course to train the student to establish the research question, research framework and literature review according to the research interest.	 Define and distinguish meanings between research methodology/research method Explain the scope of content under the research philosophy for master level Justify the research tools appropriated with the research interest Review and synthesize the literature involved with the research interest Design and develop the research framework for the research interest

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106711 Microwave Remote Sensing and Lidar	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	present. Passive microwave remote	 Explain origins and development of radar and lidar systems conceptually Explain working principles of the given radar/lidar system (especially imaging radar) Explain principles of airborne/spaceborne remote sensing of radar/lidar systems Apply radar or lidar sciences to fulfill assigned study topics effectively Analyze advances in science and roles of passive microwave remote sensing Integrate relevant knowledge/skills to fulfill needs stated in the given assignments.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106712 Hyperspectral Remote Sensing and Applications	4(4-0-12)	None	sensing system and its applications. Also, public and commercial image processing softwares are introduced and applied on hyperspectral image classification along with individual assignment/presentation. Specific	*

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106713 Remote Sensing of Earth's Surface and Atmosphere	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	This course aims to study various topics about remote sensing of the earth's surface and atmosphere. These includes, in particular, origin and development of relevant science, principles of remote sensing regarding used spectral bands and target locations (atmosphere, sea/ocean, land). Applications of remote sensing to achieve effective management in various fields, especially in natural resources/environmental management and city/its environment management, are also presented herein.	 Explain principles of remote sensing regarding spectral bands and target locations (atmosphere, sea/ocean, land) Apply remote sensing to aid effective study of the considered management topics/ issues (especially on natural resources and environment and city/its environment) Integrate relevant knowledge/skills to fulfill needs stated in the given

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106714	GNSS: Theory and Applications	4(3-3-10)	None	This course aims to study theories and applications of the GNSS (Global Navigation Satellite System) in various aspects. These include, in particular, origin and development of GNSS, working principles of GNSS satellites and the receivers (especially the Navstar system), principles of efficiency enhancement for receivers (especially errors reduction). Applications of GNSS satellites and receivers on different fields nowadays are also presented herein.	 Explain origin and development of GNSS technology conceptually Explain working principles of GNSS satellites/receivers (focused on Navstar system) Explain principles of efficiency enhancement for receivers Apply GNSS science/receivers to aid effective study of the considered topics Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106715	Geoinformatics for Field Study and Research	4(4-0-12)	None	This course aims to explore applications of geoinformatics to field study and research in various aspects. These include, in particular, principles of field survey and data collection, applications of geoinformatics tools (like GPS receiver) in key field survey activities (e.g., data recording, mapping, terrain analysis), and field survey and statistical data analysis practices.	 Explain comprehensive roles of geoinformatics in field study and research Apply geoinformatics tools (like GPS receiver/maps) in field survey effectively Analyze and process data from field survey to fulfil the set objectives

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106716	Computer Programming for Geoinformatics Applications	4(3-3-10)	None	This course is designed to provide essential knowledge on computer programing and its applications to large-scale Geoinformatics study/research. Study topics include principles of computer programming and its applications to remote sensing and GIS fields, processing of raster/vector data, and automatic map production. In addition, computer programming practice/training in laboratory are also incorporated as well as the small project assignments to be fulfilled by students.	 Describe essential knowledge on computer programming Apply and relate computer programming to raster data or satellite image Apply and relate computer programming to vector data or geometric shape Apply and relate computer programming to mapping or cartography Create computer program to solve practical problems in geoinformatics
106717	Spatial Decision Support System and Multi-criteria Decision Analysis	4(3-3-10)	•	This course aims to illustrate the integration of GIS and multi-criteria decision analysis (MCDA) for spatial decision support. Main course content includes creation of the decision criteria, decision alternatives and constraints, criteria weighting techniques, decision rules, sensitivity analysis, and result representation in spatial information form to support effective executive decision making.	 Explain principles of multi-criteria decision analysis combined with GIS Use decision criteria and alternatives Examine constraints and criterion weights Review decision rules to apply in a research Develop a research project applying spatial decision support system and MCDA

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106718	Applied Statistics for Geoinformatics Research	4(3-3-10)	None	Main aim of this course is to study utilization of statistical methods for geoinformatics data analysis whose notable ones include spatial sampling, sampling network design, spatial pattern analysis, spatial autocorrelation analysis, multi- distance spatial cluster analysis, spatial outlier and hotspot analysis, geographic distribution measurement, semivariogram construction and interpretation, covariance/crosscovariance analysis, spatial interpolation and accuracy assessment, global and local spatial regression analysis.	 Explain principles of spatial statistical analyses Interpret results of spatial statistical analyses Analyze advantages/drawbacks of statistics applied to various types of spatial data Review statistical methods to apply in a research Develop a geoinformatics research project applying spatial statistics
106719	Geospatial Database Management System and GIS Standards	4(3-3-10)	None	This course focuses on geospatial database management system with GIS standards. Main topics cover concept and architect of geospatial database, spatial database standards, inserting various data into the geospatial database, spatial data query, and analysis, database design and creation. Hands-on demonstrations of relevant softwares on geospatial database management are also given in the laboratory.	 Describe concept and architect of geospatial database Describe spatial database standards Relate and apply gained knowledge to insert various data into geospatial database Relate and apply gained knowledge to query and analyze spatial data Relate and apply gained knowledge to design and create geospatial database

		Credit			
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106721	Geoinformatics Data	4(3-3-10)	None	Main aim of this course is to study	1. Describe geoinformatics data and
	and Information			about geoinformatics	information through modern media
	Services through			data/information services via modern	2. Apply geoinformatics data and
	Modern Media			media. Main topics shall cover	information through modern media
				geoinformatics data and information	3. Apply Mash-Up Map Application
				through modern media with ISO,	4. Apply Web Map Service
				Mash-Up Map Application, Web Map	_
				Service management, Designing and	5. Apply the design and modification of
				modifying of user interface for GIS	user interface for internet GIS
				Internet. Practices on geoinformatics	
				data and information services via	
				internet are also performed in the	
				laboratory.	
106811	Advanced digital	4(3-3-10)	106603 Geographic		
	photogrammetry and			theory of Photogrammetry, object	digital photogrammetry
	3D modelling		by consent of the school	modelling, and 2D and 3D modelling.	2. Adjust and rectify the high-resolution
				This course also contains description	images for UAV mapping effectively
				illustrated both dimension	3. Generate 3D model or 2D and 3D
				measurement and labelling of 3D	spatial model accurately
				model using AutoCAD program. The	4. Give the information of object model
				student is required to perform a	in 2D and 3D using AutoCAD
				project presenting flight lines and	5. Produce high-resolution map, object
				rectification of high-resolution image	model, and 2D/3D spatial model
				mapping from UAV over the campus	accurately
				area.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106812	Advanced Spatial Data Analysis	4(3-3-10)	•	This course aims to enhance knowledge of the spatial modelling principles and their applications on some spatial issues including tendency prediction of the specific phenomena regarding continuous input data in use. Comprehensive discussion about the directions and tendency of spatial model applications (considering quality of the applied spatial data along with the implemented modelling tools) is also presented therein.	 Explain characteristics and types of geoinformatics data Implement the functions and algorithm with the spatial issues appropriately Develop slope, aspects and terrain models using different kinds of digital elevation models (DEM) Develop images from continuous data with reliable qualified results Apply appropriate spatial models to fulfilled given objectives
106813	Advanced spatial modelling: Theory and Applications	4(3-3-10)	106812 Advanced Spatial Data Analysis or	This course aims to enhance knowledge of advanced surface modelling in two and three dimensions based on mathematical algorithm and models by using advanced spatial modelling application in GIS. In addition, students are required to analyze surface modelling and present a project by using advanced spatial modelling functions in this course also.	 Explain relationships of location and phenomena regarding different topography Implement the spatial analysis tools in GIS proficiently Explain functions and give reasons in adjusting parameters of the spatial models accurately Apply the spatial models appropriately to fulfill the assigned project Analyze and give reasons to support the analyzed results of spatial 3D model with a guideline of appropriated solutions

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106814	Big Data Analytics for Advanced Geoinformatics Applications	4(3-3-10)	None	This course focuses on big data analysis applications for geoinformatics problem with large- scale data. Main topics include concept of big data, processing	 Describe the concept and characteristics of big data Describe data processing pipelines for big data Describe data analysis techniques for
				pipelines for big data, techniques for	big data 4. Apply appropriate data analysis techniques to large-scale data 5. Apply big data analysis tools, i.e., ApacheSpark and MapReduce, to large- scale data 6. Apply big data analytics to geoinformatics problems
				assigned project is needed to be fulfilled by each student also.	

		Credit	_		
	Courses	(LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
		Self stud.)			
106815	Machine Learning	4(3-3-10)	None	This course focuses on machine	1. Describe machine learning principles
	for Advanced			learning concept and technology and	2. Describe supervised (e.g. SVM) and
	Geoinformatics			its applications for solving current	unsupervised (e.g. SOM) classifications
	Solution				3. Describe non-linear regression (e.g.
				include machine learning principles;	LSR) and linear regression (e.g. GD)
				supervised classification, such as	4. Describe dimensionality reduction
				Support Vector Machine (SVM);	methods (e.g. PCA)
				unsupervised classification, such as	5. Apply unsupervised and supervised
				self-organizing map (SOM); linear	classifications to analyze relevant data
				regression methods such as least	6. Apply non-linear and linear
				square regression (LSR); non-linear	regressions to estimate prospective data
				regression methods like gradient	7. Apply the machine learning tools to
				descent (GD); and dimensionality	solve given geoinformatics problems
				reduction likes principle component	
				analysis (PCA). Several practical	
				applications of machine learning tools	
				in solving geoinformatics problems	
				are demonstrated. Students shall have	
				hands-on practicing experiences	
				through various examples and small	
				project assigned.	
					ļ

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106816 Artificial Neural Network and Deep Learning for Advanced Geoinformatics Applications	4(4-0-12)	None	network's architecture, tuning hyper parameters of neural network, various neural network forms with deep learning, such as Multilayer perceptron (MLP), convolutional neural network (CNN), recursive neural network (RNN), shallow neural network (SNN). Several applications of ANN and deep	 Describe concept of hyper parameter tuning of neural network Describe major neural network forms

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106817 Cartography and Visualization	4(3-3-10)	None	communication and visual thinking, as well as for thematic map creation, using GIS software. The content is divided into two main parts: theory and practice. A project-based learning will be employed to enhance important practical skills in mappings of students, such as creating	 communicates two or more variables related to a subject 2. Apply cartographic theory to select visual representations and symbols properly 3. Design effective map layout using visual hierarchy with balance of text and graphic 4. Evaluate appropriate theme for mapping of the given variable types

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106731 Special Topics in Geoinformatics Research	2(2-0-6)	None	topics include principles of literature review, research topic identification and implementation planning, and effective preparation/ presentation of the progress report. Pragmatic applications of geoinformatics science to fulfil referred study topic/issue are	 Explain principles of literature review for proper identification of research topic Explain principles of effective research topic preparation and implementation Explain principles of effective preparation and presentation of progress report Apply geoinformatics science in the study of the given topic/issue effectively

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106732 Geoinformatics for Studies in Atmospheric and Oceanic Sciences	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	to advanced studies in atmospheric and oceanic sciences. These include, in particular, dynamic structure of atmosphere and oceans, important study and research topics in atmospheric and oceanic sciences, principles of atmospheric/oceanic remote sensing, critical changes of atmosphere and oceans and impacts	 Explain dynamic structure and components of atmosphere and oceans Explain key details of the referred advanced study/research topics in atmospheric and oceanic sciences Explain principles of atmospheric/oceanic remote sensing Analyze critical changes of atmosphere/oceans and impacts on human and earth Apply geoinformatics to the study of the concerned topics/issues in atmospheric and oceanic sciences studies effectively Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
P E	Geoinformatics for Public Health and Epidemiology Studies	4(4-0-12)	None	This course aims to explore role of geoinformatics in public health and epidemiology studies. Key topics include (1) conceptual framework of public health/epidemiology studies, (2) principle of public health/epidemiology management, (3) public health and epidemiology management modelling, and (4) geoinformatics applications to public health/epidemiology studies. In addition, paper presentation and practical applications of relevant geoinformatics tools and geospatial models for effective public health/epidemiology management shall be implemented also.	 Explain conceptual framework of public health and epidemiology studies Explain principles of public health and epidemiology management Apply geospatial models to public health and epidemiology studies Integrated yielded knowledge/skills for public health/epidemiology studies practice

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106734	Geoinformatics for Anthropology and Paleoenvironment Studies	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	This course explores current applications of geoinformatics science to anthropology (especially archaeology) and paleoenvironment studies in various aspects. These include, in particular, principles of survey location identification, advanced survey tools, principles of land-based survey and airborne/spaceborne survey, spatial data management (e.g. recording, analysis, and processing), creation of complex spatial database, and applications of spatial models to	 Explain important study topics in anthropology and paleoenvironment studies Explain general principles of geoinformatics application to anthropology (especially archaeology) and paleoenvironment studies Analyze advances in current study in anthropology and paleoenvironment studies Apply geoinformatics/spatial models to study of the considered topics/issues in anthropology and paleoenvironment studies effectively
				specific works (especially the habitat suitability analysis).	5. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106735 Geoinformatics for Sustainable Natural Resource and Environmental Management	4(4-0-12)	None	This course aims to provide essential knowledge on sustainable natural resource and environmental management through geoinformatics science as well as relevant practices on this issue. Initial topics include (1) conceptual framework of sustainable natural resource and environmental management, (2) components of natural environment, (3) human influence on environmental changes, (4) principles of sustainable natural resource and environmental management, (5) environmental impact assessment (EIA) process, and (6) natural resource and environmental management modelling.	 Explain concept of sustainable natural resource and environmental management Explain component of natural environments Explain principle of natural resource and environmental management Apply spatial models to sustainable natural resource /environmental management Integrate yielded knowledge/skills for sustainable natural resource/environmental management in practice

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106736	Geoinformatics for Hydrology and Sustainable Water Resource Management	4(4-0-12)	None	This course provides crucial knowledge on hydrology and sustainable water resource management through geoinformatics science. Initial topics include (1) fundamental principles of hydrology/hydrological process, (2) principles of sustainable water resource management, and (3)	 Explain fundamental principles of hydrology and hydrological process Explain principles of sustainable water resource management Apply appropriate geospatial models on water resource management Integrated yielded knowledge/skills for water resource management in practice.
				sustainable water resource management modelling. In addition, paper presentation and practical uses of appropriate geoinformatics tools and geospatial models for sustainable management of water resource shall be implemented also.	

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106737 Geoinformatics for Sustainable Management of Terrestrial Ecosystem	4(4-0-12)	None	Studied topics include (1) fundamental principles of the terrestrial ecosystem, (2) principles of the sustainable terrestrial ecosystem management, (3) terrestrial ecosystem	4. Integrate gained knowledge/skills for

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106738 Geoinformatics for Sustainable Management of Coastal and Marine Ecosystems	4(4-0-12)	None	This course provides crucial knowledge on geoinformatics applications to sustainable management of coastal and marine ecosystems. Initial topics include (1) principles of coastal and marine ecosystems, (2) principle of sustainable coastal/marine ecosystem management, (3) coastal and marine ecosystems classification, assessment, and monitoring through remote sensing, and (4) geospatial modelling for sustainable management of coastal and marine ecosystem. In addition, paper presentation and practical applications of given geoinformatics tools and geospatial models for sustainable management of coastal and marine ecosystem shall be implemented also.	coastal/marine ecosystems in practice.

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106739 Geoinformatics for Integrated Watershed Management of Land and Resources	4(4-0-12)	None	This course provides crucial knowledge on geoinformatics applications to integrated watershed- scale management of land and resources. Studied topics include (1) principles of watershed management, (2) geomorphology of watershed, (3) soil erosion, landslide, flood and drought, (4) integrated watershed management of land and resources, and (5) land use change models for land and resources management. In addition, paper presentation and practical applications of proper geoinformatics tools and geospatial models for integrated watershed management of land and resources shall be implemented also.	 Explain principles of integrated watershed management of land and resources Explain about geomorphology of watershed, soil erosion, landslide, flood, drought Apply geospatial models to integrated watershed management of land/resources. Integrate yielded knowledge/skills for integrated watershed-scale management of land and resources in practice.

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106741	Geoinformatics for Effective Disasters and Risk Management	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	of geoinformatics science to the management of disasters and risk effectively, especially natural disasters. These disasters are classified by their types and origins, e.g., man-made disasters, geological disasters, hydrological disasters, meteorological disasters, environmental disasters, space disasters, as well as the prominent	 Explain origins, characteristics, and impacts of the given disasters Explain origins, characteristics of prominent natural disasters in ASEAN countries Explain principles of geoinformatics/spatial model applications to the management of given disasters, or risk, effectively Apply geoinformatics science/spatial models to the study of given topics/issues in disasters and risk management effectively Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106742	Geoinformatics for Sustainable Energy Management	4(4-0-12)		This course aims to explain about sustainable management of energy in both cases of the renewable and non- renewable energy, as well as tendencies of energy consumption and future situation. The student is required to present a project showing the application of geoinformatics technology to the relevant energy issues for sustainable management.	 Explain definitions of energy and sustainable energy management Discuss on direction/tendency of energy consumption in the future Analyze factors considered in sustainable energy management using GIS Present a project of interest in sustainable energy management

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106743 Geoinformatics fo Land Resource Management and Suitability Analysi		None	on geoinformatics applications to land resource management and suitability analysis. Initial topics includes (1) fundamental principles of land resource management, (2) modelling of suitable land allocation, (3) principles and procedure of land	 Explain suitable land allocation models Explain principles and procedure of land evaluation Apply land allocation model to land suitability analysis and land use planning

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106744 Geoinformatics for Advanced Agricultural Sector Management	4(4-0-12)	None	advanced agricultural sector. Notable topics are precision farming and smart farming. Main contents are principles of the analysis of vegetation indices, that represent conditions of remotely- sensed vegetation, and other geoinformatics applications, which	2. Discuss tendency of geoinformatics applications to advanced, precision, and smart farming systems

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106745 Geoinformatics for Planning and Management of Smart City	4(4-0-12)	None	Implementation of GIS-based models in assessing suitability of the city management based on known	 Explain theories of smart city as well as give examples of smart city at present Discuss urban theories, evolution of urbanization and various types of city planning Assess the sufficient provisional infrastructure and traffic connecting to the urban expansion with optional solutions Evaluate the environmental impacts on urbanization with solution guideline Present feasible analysis project in transportation, socio-economics, environmental situation for smart city management in response to internal/external resources practically Predict urban expansion using appropriate urban growth models

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106746 Geoinformatic Pollution and Environment Management	s for 4(4-0-12)	None	This course aims to study various kinds of pollution in urban environment regarding enforced standards and regulations. One of many topics leads to a discussion regarding the barriers to data collection which may affect to reliability of analyzed results. Development and tendency of the achievements in mitigating urban pollution around the world shall be discussed intensively. This course contains a demonstration showing some techniques used to analyze vulnerable areas and endangered areas prone to urban pollution. The final part includes discussion on the intelligent warning system of the current situation in urban areas.	 Identify the pollution situations regarding the standards and the cycle in pollution occurrences in urban areas accurately Present the guidelines to control pollution situations and prevention of the re-occurrences in Thailand and other countries Apply Geoinformatics technology to solve and manage urban pollutions properly Analyze and present the vulnerable areas, endangered areas regarding the urban pollutions accurately Planning monitoring system regarding the potential factors used in geoinformatics technology Discuss and present a guideline of an intelligent monitoring system response to current pollution situations in urban areas effectively

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106747	Geoinformatics for smart transportation and traffic system management	4(4-0-12)	by consent of the school	in the smart traffic system. This basic infrastructure is considered in database design for traffic	 Understand the fundamental theorem of the functions of network analysis in GIS Explain the constructive models of transportation and traffic management system Design database of tourism and traffic response to components and architectural infrastructure of smart
				management system effectively. Some projects will be intensively studied and analyzed in network analysis corresponding with the intelligent traffic management system.	 traffic management system 4. Analyze the network analysis techniques to overcome the taken issues accurately 5. Present the analyzed results rationally through network analysis for transportation and traffic management clearly

Cours	ses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Effecti Manag	gement of ess and Public	4(4-0-12)	None	management of business and public services effectively. Focus is on location-based businesses, e.g., retail, insurance, real estate. Public services are considered based primarily on level of their service area (e.g., local, city, regional, national) and their organizations (both public/private sectors).	 Explain principles of effective management in location-based business and service Explain principles of geoinformatics applications to the management of considered location-based business and service effectively Apply geoinformatics/spatial models to the study of the considered topics/issues in business and public services management effectively Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106749 Geoinformatics for Sustainable Tourisn and Recreational Management	4(4-0-12)	106603 Geographic Information System or by consent of the school	This course aims to implement geoinformatics technology to sustainable tourism and recreational management with response to sustainable concerns (regarding social, economic, and environmental issues). Apart from the fundamental theory, this course also focuses on tourism database creation and its management as well as thematic mapping. Discussions on current situations of tourism and recreational management by implementing geoinformatics technology in all relevant aspects are also emphasized.	 Explain meaning/concept of tourism management according to the tourism places Discuss optimal balance in social, economic, and environment for sustainability concept of tourism and recreational management Produce a thematic map of tourism and recreation accurately Analyze and present the application of geoinformatics technology for sustainable tourism and recreational management

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106751 Geoinformatics for Effective Management of Military and Law Enforcement Affair	4(4-0-12) s	None	This course aims to study applications of geoinformatics science to the management of military and law enforcement affairs effectively. For military affairs, focus is placed upon some important tasks, e.g., mapping, strategic database creation, terrain analysis, monitoring of target activities/areas, operation planning. And for the law enforcement affairs, focus is on improving capability of concerned state organizations by proper geoinformatics applications, e.g., police department, DSI, or Department of Justice.	 Explain concepts and advances in geoinformatics applications to the management of military and law enforcement affairs effectively by the named organizations Apply geoinformatics science to the study of referred topics/issues in military and law enforcement affairs management effectively Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab-	Prerequisite	Course Description	Expected Learning Outcomes
106752	Geoinformatics for Effective Management of Strategic Public Affairs	Self stud.) 4(4-0-12)	None	This course aims to study effective managements of strategic public affairs through proper applications of geoinformatics. Several enforced strategic public policies or plans are considered, e.g., Thailand 4.0, 20-year national strategic plan (2017-2036), as well as specific plans for some critical issues like the water resource management plan, and current strategic plans implemented by several state organizations at provincial to national level.	 Explain main content of the given strategic policies/plans of the government/state organizations Explain principles of geoinformatics applications to the management of strategic public policies/plans of the government/state organizations effectively Apply geoinformatics science to the study of given topics/issues in strategic public affairs management effectively Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106753	Geoinformatics for Effective Provincial and Local Administrations	4(4-0-12)	None	This course aims to study applications of geoinformatics science to the administration at provincial and local levels effectively based on plans/policies enforced at provincial level, or on missions under responsibility of the state agencies at provincial or local levels.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106754	Geoinformatics for Integrated ASEAN Development and Management	4(4-0-12)	None	This course aims to explore applications of geoinformatics science to the integrated management/development of ASEAN region in various aspects. These include, in particular, environment/natural resources, city and its environment, quality of life/economic security, climate change, natural disasters/severe pollutions, and public health/epidemiology.	2. Explain principles of geoinformatics
106831	Geoinformatics for Geology and Civil Engineering Studies	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	This course aims to study applications of geoinformatics science in geology and civil engineering studies on various topics. These include, in particular, field survey, observation of target areas using airborne/spaceborne remote sensing tools (both active/passive types), 2D/3D mapping, construction of complex spatial database, analysis/processing of spatial data under given criteria, and applications of spatial models in specific tasks (especially for safety and risk analysis).	 Explain principles of geoinformatics application to geology/civil engineering studies Apply geoinformatics tools to the survey/collection of spatial data

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106832 Geoinformatics for Advanced Meteorology and Climatology Studie	4(4-0-12)	106601 Remote Sensing: Theory and Applications or by consent of the school	This course aims to study applications of geoinformatics science to advanced studies in meteorology and climatology. Main topics include origin and patterns of climate variation (in both spatial/temporal aspects) at local to global scales, impacts of climate changes (from past to present) on human and earth, progress on various fields (especially geoinformatics) in the monitoring and prediction of weather at present.	meteorology/climatology studies at present 2. Explain origins and patterns of climate variation (in both spatial/temporal aspects) 3. Analyze impacts of climate changes (from past to present) on human and earth 4. Analyze important roles of weather

Cou	urses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
Soci Stud	pinformatics for sial Science dies and plications	4(4-0-12)	None	geography, anthropology, criminology, law, economics,	 Explain notable topics in social science studies and applications nowadays Explain principles of geoinformatics applications to the referred social science task Analyze case studies of geoinformatics application to interested social science task Apply geoinformatics science to the study of given topics/issues in advanced social science studies effectively Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106561 Introduction to Geoinformatics	4(3-3-10)	None	The course provides essential knowledge on geoinformatics science and technology including remote sensing (RS), geographic information system (GIS), and global positioning system (GPS). Described topics also include data acquisition, encoding, enhancement, and management. In addition the process of data interpretation, analysis, and input to make GIS data layers shall be discussed and practiced in laboratory and examples of their applications are given. Hands-on work on geo- information using software is demonstrated in laboratory.	 2. Describe working principles of the geographic information system (GIS) 3. Describe working principles of the global positioning system (GPS) 4. Apply geoinformatics technology to solve various problems

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106562 Introduction to Meteorology	3(3-0-6)	None	knowledge of meteorology in various aspects to students. These include, in particular, meteorological elements (e.g. air temperature, air humidity, air pressure), optical phenomena, clouds, rain, storms, air movement (at local to global scales), climate changes (from past to present) and their impacts, air pollutions and disasters, scientific progress in weather monitoring and prediction (especially those related to geoinformatics science) at present.	interest 2. Explain formation process and characteristics of the optical phenomena of interest 3. Analyze trend of climate changes

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106563 Earth Science: Theory and Applications	3(3-0-6)	None	These include, in particular, origins and development of earth and living organisms based on theories and empirical evidences, dynamic structure and components of earth system (lithosphere, hydrosphere, atmosphere, biosphere), relationship of humans and nature, advances and	 Explain origins and development of earth and living organisms based on theories and empirical evidences Explain dynamic structure and components of earth system Explain relationship of humans and nature, Analyze notable advances and significant roles of earth science Analyze roles of geoinformatics science in earth science study nowadays Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106564 Space Technology Development and Applications	3(3-0-6)	None	This course aims to study space technology science in various topics. These include, in particular, origin and development; roles of the leading space organizations of the world (especially NASA); travelling between earth and space; travelling in space; working principles of satellite, spacecraft, and spaceborne remote sensors; life in space; spaceborne remote sensing of earth, solar system, and universe; prominent earth and space exploration projects; and roles/advances in space technology nowadays	 Explain origin/development of space technology and roles of key space agencies Explain principles of travelling between earth and space and travelling in space Explain working principles of satellite, spacecraft, and spaceborne remote sensors Explain concept of life in space and how to live in space productively Analyze advances in earth/space exploration by space technology Analyze advances in space technology and its roles in the modern world Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106565	Human Geography: From Past to Present	3(3-0-6)	None	This course aims to provide knowledge of human geography in various topics. These include, in particular, human origins, evolution, and their settlements (from past to present), diversity of human characteristics (e.g. believe, culture, politics, way of life), births of the city and civilization, pattern of life at present time, and applications of geoinformatics science to the human geography study nowadays.	 Explain origins, evolution, and settlement pattern of humans from past to present Explain diversity in notable human characteristics and their relevant causes Analyze variation in human's pattern of life from past to present Analyze roles of geoinformatics science to the human geography study nowadays Integrate relevant knowledge/skills to fulfill needs stated in the given assignments
106661	Advanced Geographical Tools	3(3-0-6)	None	This course aims to explore prominent geographical tools and their applications to various tasks (including geography education). These tools are initially divided into groups including (1) 2D maps, (2) field surveys, (3) statistical data analysis, (4) spatial technologies (e.g. virtual map, satellite imagery, aerial photo, GPS receivers, UAV-based photogrammetry, GIS, remote sensing), (5) data/information presentation technology, (6) new media/internet technologies for works in geography.	 Explain about crucial advanced geographical tools and applications in various tasks Apply the advanced geographical tools to effective study of the given topics/issues Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106662 Advances in Applied Geoinformatics	3(3-0-6)	None	applied geoinformatics on several fields. First, working principles of main geoinformatics science components (remote sensing, GIS, GNSS) are presented followed by apparent advances in geoinformatics applications to various fields of interest. These include, in particular, agriculture and rural development, hydrology/water resource	 Explain working principles of main components of geoinformatics (RS, GIS, GNSS) Explain principles of geoinformatics applications to the referred field of interest Analyze advances in applications of geoinformatics science to the given fields Apply the geoinformatics science to effective study of the concerned topics/issues in applied geoinformatics Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106663	Laws for Natural Resource and Environmental Management	3(3-0-6)	None	established laws in various aspects, for examples, natural resources management, conservation of nature and pristine environment, forest/wildlife management, environmental/health impact	 Explain concepts of environmental/natural resources management through laws Explain crucial laws for given environmental/natural resources management issues Analyze roles of geoinformatics applications in effective enforcement of concerned laws in environmental and natural resources management
				international law/agreement in this field. Applications of geoinformatics	4. Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106761 Physical Principles of Remote Sensing	(3-0-6)	None	This course aims to provide knowledge on physical principles of remote sensing and its associated applications in various situations. Principle topics include electromagnetic (EM) theories and principles of remote sensing through electromagnetic waves, working principles of standard remote sensors at different spectral wavebands (especially visible, infrared, and microwave portions), and principles of remote observation in dynamics of earth's four main components (land, ocean, atmosphere, and biosphere).	 Explain electromagnetic theories/principles of remote sensing through EM waves Explain working principles of remote sensors at different spectral wavebands Explain principles of remote sensing in dynamics of earth's 4 core components Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106762	Geoinformatics for Sustainable Development of the Country	3(3-0-6)	None	 country in various aspects. These include, in particular, natural resources/environmental management, urban planning and city management, Agricultural and industrial management, crucial security managements (e.g. food, energy, economy) and quality of life 	 Explain concepts and theories in sustainable development of the country Explain principles of geoinformatics applications to the sustainable development of the country in given fields Analyze state policies established to aid sustainable development of the country Integrate relevant knowledge/skills to fulfill needs stated in the given assignments

Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106763 Sustainable Management of Human- Environment Relationship	3(3-0-6)	None	include, in particular, related theories, sustainable managements seen in various sectors (e.g. agricultural/local parts, city/industrial parts) and community scales (from local to global scales), relevant social	 such issue in given sector or community scale 3. Analyze effectiveness of applied social mechanisms/laws in some case studies 4. Apply the geoinformatics science to

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106764	English Proficiency for Geoinformatics Study and Research	3(3-0-6)	None	Development of English proficiency in 4 essential skills: listening, reading, speaking, and writing, improvement of listening skill using media on the internet holding content of geoinformatics software and data analysis methods, improve of reading skill by textbook and research article reading, development of speaking skill by delivering a presentation on the conclusion drawn from the reading and leading a discussion on the questionable issues, organizing knowledge gained from the reading and discussion and then writing report to enhance writing skill	 Summarize main idea from the reading Present the main idea from the reading to the class Discuss the questionable issues from the reading Organize knowledge gained from the reading and discussion
106765	Graduate Cooperative Education in Geoinformatics	8(0-0-0)	Pre-cooperative Education course, or by concent of the school	This course aims to offer students work-based experience in the qualified workplace which lasts for about 1 semester (4 months).	 Explain roles of geoinformatics in cooperative education at preferred workplace Apply knowledge/skills in geoinformatics for cooperative education effectively

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
205501	Entrepreneurship and Innovation	2(2-0-4)	None	Study of entrepreneurship, innovation and technology business, open innovation, attitudes and motivation of innovative entrepreneurs and social entrepreneurs, characteristics of successful entrepreneurs, new venture process, business model generation and business plan, business Frost & Sullivan feasibility and problems of new ventures.	
205502	Opportunity and Feasibility Analysis	2(2-0-4)	None	Identify potential opportunities, trend and market analysis, technology roadmap and forecasting, opportunity assessment, develop a business concept and vision, customer's insight and customer validation, and feasibility analysis.	
205503	Intellectual Property Strategies	2(2-0-4)	None	Concepts and principles of intellectual property management, intellectual property from research and development, patent searching, intellectual property laws and methods of intellectual property protection, intellectual property valuation and method in creating return on intellectual properties.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
205507	Entrepreneurial Marketing	3(3-0-6)	None	Marketing for new products and new markets, market opportunity analysis and evaluation, market segmentation strategies, value proposition design, marketing strategies and marketing plan, the use of internet in marketing, new product launch, branding and brand management, and marketing metrics.	
205508	Entrepreneurial Finance	3(3-0-6)	None	Principles of entrepreneurship, financing for entrepreneurial processes from start-up to harvesting, cost structure and financing need analysis, revenue model analysis, financing from money and capital markets, analysis and evaluation of financing sources, and cash flow analysis.	
106681	Seminar I (for M.Sc. Program)	1(1-0-3)	None	To present problems or academic interest in geoinformatics research at M.Sc. level.	
106682	Seminar II (for M.Sc. Program)	1(1-0-3)	None	To present final progress of the thesis (or independent study) work by M.Sc. students.	
106691	M.Sc. Thesis (Scheme A 1)	45	None	Original research leading to the formation of a thesis as required by the University's Regulations for the Master degree scheme A 1.	

	Courses	Credit (LectLab- Self stud.)	Prerequisite	Course Description	Expected Learning Outcomes
106692	M.Sc. Thesis (Scheme A 2)	15	None	Original research leading to the formation of a thesis as required by the University's Regulations for the Master degree scheme A 2.	
106693	Independent Study (Plan B)	6	None	Comprehensive study on specific geoinformatics topic as required by the University's Regulations for the Master degree plan B.	